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Murphy’s law, statistical version

The probability of anything happening is in inverse ratio to
its desirability.



Bernanke, 2007: great speech because . . .

• Probabilities

• Utility functions

• Bayesian model averaging

• Model selection

• Robust control and multiple priors



Bernanke, October 2007

• He mentions Bayesian subjective expected utility analyses and
highlights a decision maker’s unique probability density over
states of the world, which for the monetary policy maker is a
dynamic model of the economy.

• A Bayesian analysis also involves a utility function over states,
which for a monetary policy maker is a welfare function to be
used as an ingredient of an optimal policy problem. A timing
protocol captures whether the policy maker has a commitment
technology.

• He mentions multiple-priors models cast in terms of robust
control theory. Here a decision maker is ambiguous about
probability distributions and cannot elude that ambiguity by
putting a prior over multiple models that would reduce those
multiple models to a single model.



Bernanke, October 2007

• He describes how a multiple-priors (a.k.a. robust) decision maker
engages in a worst-case analysis over probability distributions as
a device for designing a policy rule that works well over the range
of probability models that express his ignorance.

• I read passages in his remarks as describing policy procedures
that first do model selection, then make decisions that maximize
expected utility using the winning model.

• I read other passages as alluding to Bayesian model averaging
that effectively always keeps all models in play because Bayes’s
Law is too forgiving ever completely to destroy an ill-fitting
model.



Bernanke, October 2007

• He discusses how Bayesian and multiple-priors robust control
models often recommend decisions that are more aggressive than
ones that would be made if a policy maker having more
confidence in a reduced set of models.

• Under concerns about robustness, highly serially correlated
worst-case shocks rationalize the policy maker’s more aggressive
policy stance.



Objects in play

There is a finite space of states I = {i = 1, . . . , I}. A (consumption)
plan is a function c : I → R. Let π be an I × 1 vector of nonnegative
probabilities over states and u : R → R be a utility function. The
relative entropy of a probability vector π̂ with respect to probability

vector π is the expected value of the likelihood ratio mi =
(

π̂i

πi

)

under

the π̂ distribution:

ent(π, π̂) =

I
∑

i=1

π̂i log
( π̂i

πi

)

=

I
∑

i=1

πi

( π̂i

πi

)

log
( π̂i

πi

)

or

ent(π, π̂) =

I
∑

i=1

πimi log mi.



Expected utility

A decision maker is said have expected utility preferences when he
rank plans c by their expected utility

I
∑

i=1

u(ci)πi

where u is a unique utility function and π is a unique probability
measure.



Constraint preferences

A decision maker is said to have constraint preferences when he ranks
plans c according to

min
{mi≥0}I

i=1

I
∑

i=1

miπiu(ci)

where the minimization is subject to

I
∑

i=1

πimi log mi ≤ η

and
I

∑

i=1

πimi = 1.

Here η ≥ 0 specifies the size of an entropy-ball of probability
distributions π̂ surrounding a baseline distribution π.



Multiplier preferences

A decision maker is said to have multiplier preferences when he ranks
consumption plans c according to

min
{mi≥0}I

i=1

I
∑

i=1

πimi[u(ci) + θ log mi]

where the minimization is subject to

I
∑

i=1

πimi = 1.

Here θ ∈ (θ, +∞) is a parameter that, by penalizing choices of mi

that enlarge entropy, expresses the decision maker’s concern about
possible misspecification of the baseline model π.



Slopes of indifference curves

• Expected utility:
dc2

dc1

= −
π1

π2

u′(c1)

u′(c2)

• Constraint preferences:

dc2

dc1

= −
π̂1

π̂2

u′(c1)

u′(c2)

where π̂1, π̂2 are the minimizing probabilities.

• Multiplier preferences:

dc2

dc1

= −
π1

π2

exp(−u(c1)/θ)

exp(−u(c2)/θ)

u′(c1)

u′(c2)



Entropy
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Figure: Entropy as a function of π̂1 when π1 = .5.



Level curves
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Figure: Indifference curves for expected utility, multiplier (smooth), and
constraint (kinked at 45 degree line) preferences. The worst case
probability π̂1 < .5 when c1 > c2 and π̂1 > .5 when c1 < c2.



Level curves
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Figure: Indifference curves for multiplier (smooth) and constraint (kinked
at 45 degree line) preferences. The worst case probability π̂1 < .5 when
c1 > c2 and π̂1 > .5 when c1 < c2.



Isoentropy curves
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Figure: Iso-entropy and iso-expected utility, α = 0. The ‘expansion path’,
or locus of tangencies, shows the worst case probabilities associated with
values of θ over the interval θ−1

∈ [0, 2]. Entropy increases and expected
utility decreases as we move northwest along an expansion path.



Isoentropy curves
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Figure: Iso-entropy and iso-expected utility, α = 3. The ‘expansion path’,
or locus of tangencies, shows the worst case probabilities associated with
values of θ over the interval θ−1

∈ [0, 2]. Entropy increases and expected
utility decreases as we move northwest along an expansion path.



Murphy’s Law

Multiplier preferences can be represented with the indirect utility
function

Ru(c) = −θ log

I
∑

i=1

πi exp
(

−u(ci)/θ
)

.

Evidently,

Ru(c) =
I

∑

i=1

πim̂i[u(ci) + θ log m̂i]

where
m̂i = exp(−u(ci)/θ)/

(

∑

j

πj exp(−u(cj)/θ)
)

attains the min{mi≥0}I

i=1

∑I

i=1
πimi[u(ci) + θ log mi], subject to

∑I

i=1
πimi = 1. Ru is called the risk-sensitivity operator.



Murphy’s Law, 2

It follows from the definition of R that

I
∑

i=1

miπiu(ci) ≥ Ru(c) − θ

I
∑

i=1

πimi log mi.



Dynamics is a special case of statics

There is a set of states Ω with elements ω ∈ Ω. Let
ct = ct, ct−1, . . . , c0. A plan is now an infinite dimensional random
sequence ∞, with a time t component that is a measurable function of
ω. A utility function W : c∞ → R. The probability of states is
described by a density π(ω) and relative entropy is

ent(π, π̂) =

∫

log
(

π̂(ω)/π(ω)
)(

π̂(ω)/π(ω)
)

π(ω)dω.



Dynamics

Multiplier preferences are characterized by an indirect utility function
like the one above constructed by applying the risk-sensitivity
operator to W :

R(W ) = −θ log

∫

exp
(

−W (c∞(ω))/θ
)

π(ω)dω

and the associated worst-case probability density is

π̂(ω) = π(ω) exp
(

−W (c∞(ω))/θ
)/

∫

exp
(

−W (c∞(ω̃))/θ
)

dω̃

(Murphy’s law)



Romer and Romer, 2008

Should monetary policymakers take the staff forecast of the
effects of policy actions as given, or should they attempt to
include additional information? This paper seeks to shed light
on this question by testing the usefulness of the FOMCs own
forecasts. Twice a year, the FOMC makes forecasts of major
macroeconomic variables. FOMC members have access to the
staff forecasts when they prepare their forecasts. We find that
the optimal combination of the FOMC and staff forecasts in
predicting inflation and unemployment puts a weight of
essentially zero on the FOMC forecast and essentially one on
the staff forecast: the FOMC appears to have no value added
in forecasting. The results for predicting real growth are less
clear-cut. We also find statistical and narrative evidence
that differences between the FOMC and staff forecasts help
predict monetary policy shocks, suggesting that
policymakers act in part on the basis of their apparently
misguided information. [emphasis added by Sargent]



Adapted Primiceri (2006) model

u∗
t+1 = u∗

t + cu∗wt+1

where wt+1 ∼ N (0, I), u∗
0 ∼ N (µ∗

0, σ
∗2
0 ). Inflation πt and

unemployment Ut are related to a policy variable vt by

πt+1 = πt + γ0(Ut − u∗
t ) + γ1(Ut−1 − u∗

t−1) + cπwt+1

(Ut+1 − u∗
t+1) = ρ1(Ut − u∗

t ) + ρ2(Ut−1 − u∗
t−1) + vt + cUwt+1

The government’s objective is the expected value of

−.5

∞
∑

t=0

βt
(

(πt − π∗)2 + λ(Ut − ku∗
t )

2 + φ(vt − vt−1)
2
)



Bayes’ Law (Kalman filter)

K2(∆) = (A22∆D′
2 + C2G

′)(D2∆D′
2 + GG′)−1

C(∆) ≡ A22∆A′
22 + C2C

′
2 − K2(A22∆D′

2 + C2G
′)′.



Law of motion

In terms of the state variables (y, ž, ∆), the law of motion for
(y, z, ž, ∆) can be written as

y∗ = A11y + A12ž + B1a + C1w
∗ + A12(z − ž)

z∗ = A21y + A22ž + B2a + C2w
∗ + A22(z − ž)

ž∗ = A21y + A22ž + B2a + K2(∆)Gw∗ + K2(∆)D2(z − ž)
∆∗ = C(∆) (1)

where w∗ ∼ N (0, I) and z − ž ∼ N (0, ∆).



Perturbations

• Distribution of w∗

• Distribution of (z − ž) emerging from Bayes’ Law.



Inflation forecasts (FOMC and staff)
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Figure: Worst case forecast Ẽtπt+1 versus Etπt+1.



Unemployment forecasts (FOMC and staff)
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Figure: Worst case forecast ẼtUt+1 versus EtUt+1.



NAIRU forecasts (FOMC and staff)
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Unlikely worst-case?

The density for the approximating model is

log ct+1 − log ct = µ + σcǫt+1

where ǫt+1 ∼ N (0, 1) and µ and σc are estimated by maximum
likelihood from the data in the histogram, data for 1948I-2006IV. The
worst-case density has mean shift −σcw where w is calculated by
setting a detection error probability to .05. The worst case model
appears to fit the histogram nearly as well as the approximating
model.



Consumption growth
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Figure: Histogram and maximum likelihood and worst-case densities for
U.S. quarterly consumption growth, 1948I-2006IV.



Wedgeology

Consumption Euler equation:

Eβ
u′(ct+1)

ct

Rt+1 = 1.



Wedgeology

∑

t

∑

st

u(c(st))
Π̌(st)

Π̂(st)

Π̂(st)

Π(st)
Π(st)

where Π(st), Π̂(st), Π̌(st) are joint densities over histories of states,
and Π is a true or physical measure, Π̂ is a measure induced by Bayes’
Law, and Π̌ is a twisted measure induced by robust adjustments to
either Π̂ or just to Π (in settings without learning).



Wedgeology

What is called the New Keynesian IS curve simply rearranges

1 = β
∑

st+1

(u′(ct+1)

u′(ct)

)

Rt+1(s
t+1)

π̌(st+1|st)

π̂(st+1|st)

π̂(st+1|st)

π(st+1|st)
π(st+1|st)

Wedge:
π̌(st+1|st)

π̂(st+1|st)

π̂(st+1|st)

π(st+1|st)



IS curve wedgeology

• Shocks to the stochastic discount factor are shocks to the NK IS
curve.

• Bayes’ law leads to a backwards looking model of shocks.

• Robustness leads to a forward-looking model of shocks, due to
the ‘Murphy’s law’ feature of exponential twisting that involves
value functions.

• Alternatives to habit persistence.

• Kreps-Porteus interpretation (e.g., see Tallarini (2000)).



Paraphrase of Bernanke, October 2007

When the day arrives that monetary policy makers come to
know the probabilities that govern the risky outcomes they
face, the Bayesian approach will tell us how to make policy.
Then our policy prescriptions will reflect both the probability
weights we attach to outcomes and the continuation values
we associate with them. Of course, until Congress tells the
FOMC to target inflation, continuation values will reflect the
‘dual mandate’ the Humphrey-Hawkins Act assigns.



Paraphrase of Bernanke, October 2007

In the mean time, it is worth thinking about other approaches
to model uncertainty that, like robust control, require less
confidence in the probabilities that our favorite model
assigns. To acquire robustness across a set of probability
models, robust control adopts an instrumental pessimism that
allows a decision maker to put bounds on performance by
using a min-max expected utility approach. To construct
these bounds, the decision maker contemplates
worst-scenarios among a set of probability models restricted
as the policy maker wishes. Sometimes a thoughtful policy
maker who has serious model specification doubts will appear
to act more aggressively than one who is sure that,
probabilistically speaking, he knows the truth.



Great speech because . . .

• Probabilities

• Utility functions

• Bayesian model averaging

• Model selection

• Robust control and multiple priors


